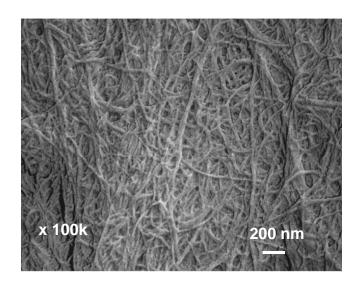


Application of Nano-Fibrillated Cellulose as a Paper Surface Treatment for Inkjet Printing

Wing T. Luu and Douglas Bousfield, The University of Maine


John Kettle, VTT

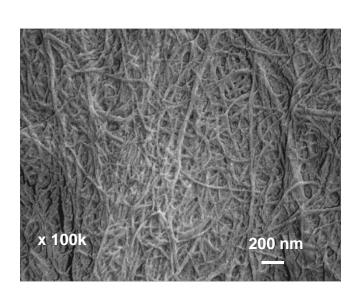
RETHINK PAPER: Lean and Green

Motivation

- Nano-fibrillated cellulose (or micro-fibrillated cellulose) should be possible to produce on site at low costs.
- By putting this fine material at paper surface, we may be able to improve the print quality of paper.

Objective

 To explore the potential of nano-fibrillated cellulose (NFC) as a coating material to improve inkjet print quality of woodfree fine papers

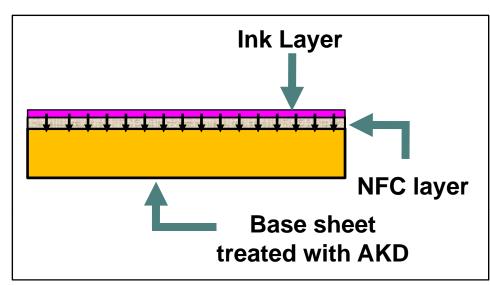

Key Questions

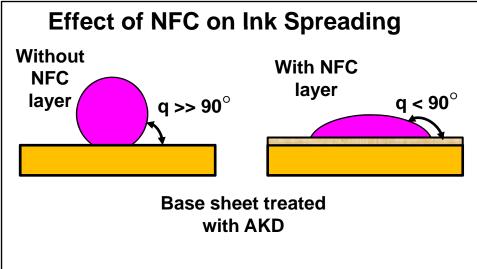

- What influence does the combination of NFC and alkyl ketene dimer (AKD) have on absorption and spreading of inkjet inks on uncoated papers
- What influence does NFC have on dye based vs. pigment based inks

Nano-fibrillated Cellulose

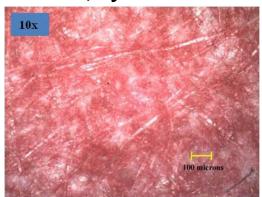
- NFC suspension bleached softwood kraft fiber
- Initial solids content about 3.5%
- Prepared by mechanical treatment with pilot-scale refiner, University of Maine

FE-SEM image of NFC and its viscosity curve provided by Hamada and Bousfield

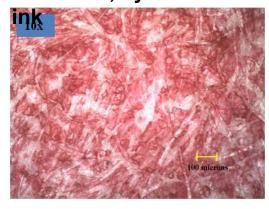

Procedure Outline

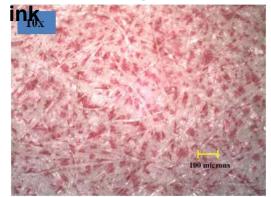

- 1. Uncoated woodfree fine paper immerse in 1% solution of AKD wax in hexane, allow hexane to evaporate, and oven cure at 105°C for 5 minutes.
- 2. Coat papers with NFC at different coat weights using a wire-rod coater.
 - NFC coat wt. ranged from 2 to 5 g/m²
 - Calender samples at 50°C and nip load of 100 kN/m
- 3. Print samples using desktop inkjet printer.
 - Dye and pigment-based magenta inks
- 4. Measure print density.

Procedure Outline – Coating with NFC


- Proposed Mechanism:
 - Hydrophobic base paper treated with AKD limits or prevents fluid penetration into the sheet.
 - Reduces print-through
 - Ink drops contact on hydrophobic surface, giving low coverage and low print density
 - Hydrophilic NFC layer helps ink spread on the AKD-treated paper.
 - Ink drops spread more, giving higher coverage and high print density
 - NFC layer may also filter pigments on paper surface

Results – Effect of AKD only on print quality

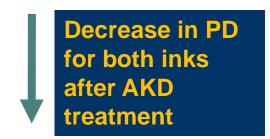

No AKD, dye-based ink


No AKD, pigment-based

With AKD, dye-based

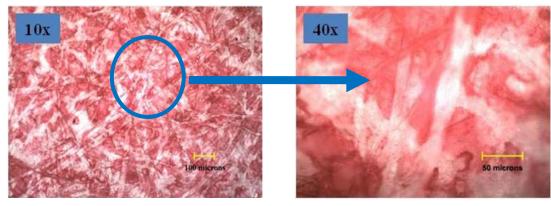
With AKD, pigment-based

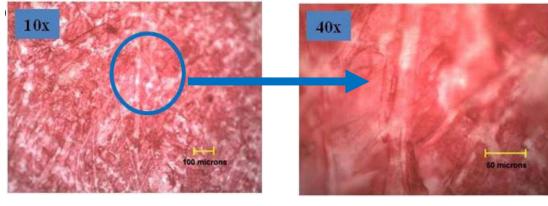
- Solid areas printed on base paper before and after AKD treatment
- Higher coverage for base paper without AKD
- Ink drops contract on AKDtreated paper, giving poor coverage and low print density



Results – Effect of AKD only on print quality

Print density of samples before and after AKD treatment


Sample	Dye-based	Pigment-based	
No AKD	0.71 ± 0.01	0.43 ± 0.01	
With AKD	0.59 ± 0.02	0.33 ± 0.01	

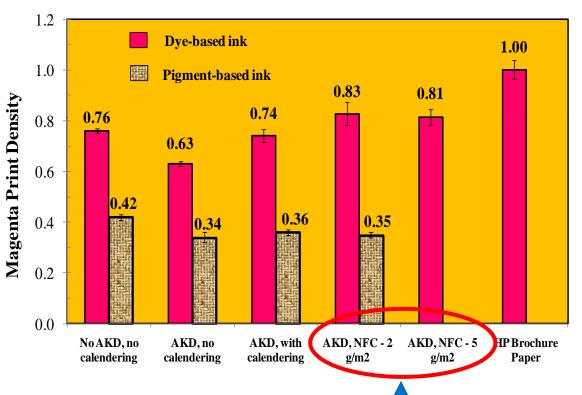


Results – Effect of AKD and NFC on print quality (Dye-based ink only)

AKD, no NFC,

AKD with 2.0 g/m^2 ,

Coat AKD base sheet with NFC


NFC layer improves ink spreading and gives higher print density

PaperCon 2011

Results – Effect of AKD and NFC on print density (printed side)

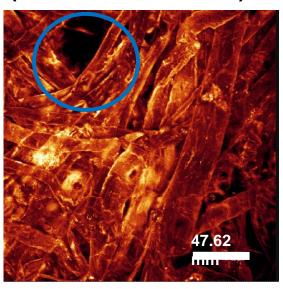
- Dye-based ink print density increased after applying NFC
- Pigment based ink no change in PD after NFC treatment
 - Possible that pigments are immobilized or trapped on the NFC layer

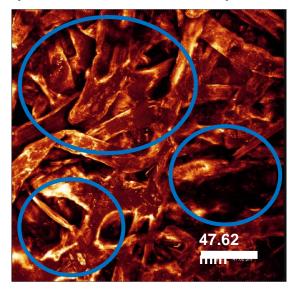
Additional NFC may not increase PD

Results – Effect of AKD and NFC on print density (reverse side)

Sample	No AKD, no calendering	With AKD, no calendering	With AKD,	vith AKD, 2.0 m ² NFC, alendered
Printed Side	0.76 ± 0.01	0.63 ± 0.02	0.74 ± 0.03	83 ± 0.05
Reverse Side*	0.041	0.019	0.021	017

^{*}Standard deviation of the reverse side PD ranges from ± 0.007 to 0.009


Combination of NFC & AKD increases PD while reducing print-through



Results – Confocal Laser Scanning Microscopy (Dye-based ink)

Uncoated woodfree paper (Before AKD treatment)

Uncoated woodfree paper (After AKD treatment)

- Sample with no AKD ink spreads on low contact angle surface, giving a high PD
 - Only with a few areas where the ink did not cover
- Sample with AKD ink drops contract on hydrophobic surface, giving poor coverage
- Pigment-based inks similar trends were observed

Concluding Remarks

- Combination of AKD and NFC increase print density for dye-based inkjet inks. No differences observed for pigment inks.
- AKD treated fibers limit fluid penetration. Ink drops contract on AKD base paper
- Both types of inks spread on hydrophilic NFC layer. Give higher print density for dye-based inks.

The authors would like to thank the industrial sponsors of The Paper Surface Science Program at The University of Maine.

- Armstrong World
- Goss International
- IMERYS
- KaMin LLC
- OMNOVA Solutions

- VTT (KCL)
- SAPPI Fine Paper NA
- SCA
- Specialty Minerals Inc.
- Stora-Enso
- UPM-Kymmene

